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Abstract

Convenient exact closed-form expressions are derived for calculating the bending stiffness of and stresses within
loaded cylindrical bonded rubber blocks of circular cross-section. The particular solutions for simple bending, canti-
lever loading and apparent shear situations are deduced and studied in detail. The shapes of the deformed profiles are
discussed and confirmation is provided that the previously adopted assumption of parabolic profiles of the deformed
lateral curved surface is only valid for blocks of very small aspect ratio. In simple bending a relationship which is more
realistic than those hitherto suggested is derived for the couple required to maintain a specified rotation of the loaded
end of the block. In apparent shear an exact expression for the ratio of the true to the apparent shear modulus is
derived, and compared with the experimental data. An improved approximate relation is deduced.
© 2002 Elsevier Science Ltd. All rights reserved.
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1. Introduction

The properties of rubber mountings bonded to rigid metallic end plates have been exploited widely for
many years in a variety of engineering components. It is therefore extremely important to be able to predict
their deformation and stiffness under specified applied loads.

An analysis is presented here of a rubber block of right-circular cross-section with one end maintained in
a fixed position while the other end is subjected to a couple and shear force. In general this causes the block
to bend, with its loaded surface tilting and deflecting laterally.

The fundamental problem is formulated in Section 2, and then, in Section 3, an exact analytical solution
to the governing equations under a comprehensive loading system is derived. This enables detailed dis-
cussions to be undertaken in Sections 4-6, respectively, of situations corresponding to simple bending,
cantilever loading and apparent shear.

Rivlin and Saunders (1949) investigated experimentally the effects of bending and shear on various
cylindrical shear mountings. They attempted to determine the modulus of rigidity of the rubber, and

* Corresponding author. Tel.: +44-1274-234273; fax: +44-1274-234290.
E-mail address: g.e.tupholme@bradford.ac.uk (G.E. Tupholme).

0020-7683/02/$ - see front matter © 2002 Elsevier Science Ltd. All rights reserved.
PII: S0020-7683(02)00468-7


mail to: g.e.tupholme@bradford.ac.uk

5880 J.M. Horton et al. | International Journal of Solids and Structures 39 (2002) 5879-5893

suggested a theoretical approximate formula for the ratio, p/u,, of the true shear modulus to the apparent
shear modulus with which they compared their results. Their treatment was critically reconsidered by Gent
and Meinecke (1970), who proposed alternative expressions for the bending stiffness factors in apparent
shear for various cross-sections. More recently, Tsai and Lee (1999) developed a pressure approach to
determine the tilting stiffness of an elastic layer bonded between rigid plates.

These previous analyses rely on the kinematic assumptions that not only do the cross-sectional planes
remain planar but that the lines initially normal to the bonding plates become parabolic under deformation.

It is specifically confirmed in the present paper in Sections 4.3 and 6.3 that the assumption of a parabolic
profile is in general invalid. From the exact general solution given here, with this assumption relaxed, an
expression is derived for the shear moduli ratio in apparent shear which enables an improved approxi-
mation, p/utPP*, to be deduced. Comparisons are given with the experimental data of Rivlin and Saunders
(1949). Similarly, in simple bending a more realistic relationship between the couple required to maintain a
specified rotation of the loaded end of the block is deduced.

2. Theoretical formulation

Consider a rubber block of right-circular cross-section, with radius « and axial height 4. A rectangular
Cartesian coordinate system (x,y,z) is defined relative to an origin O at the centre of one of its end faces
with Oz along the axis of the block, as shown in Fig. 1. The cylindrical polar coordinates (r, 0,z) of a point
P within the block are related to its Cartesian coordinates by the equations

x=rcosl, y=rsinf, z=z.

The rubber is bonded to two rigid end plates at z = 0 and 4 that prevent all distortions of its plane end
surfaces with the end at z = 0 held in a fixed position. The other end at z = / is subjected to a shear force of
magnitude F to the face in the —Ox direction together with a moment of magnitude M — Fh in the negative
direction of the y-axis. This will tilt the face z = 4 through a small angle of rotation ¢ about the y-axis and
laterally displace it a small distance d in the —Ox direction.

I\Z

C\M_Fh

0] X

Fig. 1. Undeformed cross-section of the block through the y = 0 plane.
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It is assumed throughout that the rubber is isotropic, homogeneous and incompressible, and that the
displacement gradients are sufficiently small for the classical linear theory of elasticity to be applicable. The
radial, tangential and axial components of the displacement of the point P are denoted by u,, uy and u,,
respectively, and the cylindrical strain and stress components by ¢; and o;;, where i, j =r, 0 or z, in the
usual notation.

The strain—displacement gradients relations and the constitutive equations can be written as

T Ty T P 2\ 00 )
1 /%u. n Ou, 1 [ 0u n 1 Ou. 0
&z = & = 2 or oz ) &0 = &0 = B oz r 00 ’
1 1 1 1
& = ﬂ |:O-rr - 5 (0-09 + O-zz):| ) Epo = ﬁ |:090 - 5 (O-rr + O-zz):| )
&z = 5 |:O-ZZ - E (Grr + 0'()0):| y 0w = 0o = 2U, Op = 0z = 2Ue, Op. = 0z = 2uey., (2)

where p is the shear modulus. The assumption of incompressibility implies that, for small strains,
Epr + €0 + &z = 0 (3)

and the equilibrium equations which must be fulfilled in the radial and tangential directions (Spencer, 1980,
Eq. (11.39)) are

00, l 00,9 00, 0, — 0p _
o 'r o0 oz ro
0o,9 100y 0oy, 20—4}
o Tr0 T Ty

0,

=0.

3. Solution for a general loading

Expressions for the angular rotation and lateral deflection of the bonded end of the block at z = 4 arising
from the bending are first derived for a general loading situation.

During bending it is assumed that plane right-circular cross-sections remain plane whilst rotating
through an angle «(z) from the z = constant planes. Representations for the corresponding displacement
components at the general point P in the rubber are therefore sought in the forms

u, = UcosO, wug="Vsin0, wu, = arcosd, (5)

with the functions U and V' depending upon r and z.
By substituting these into the incompressibility condition (3), using Eq. (1), it follows that

B oUu  ,da

The shear and normal stress components can be expressed in terms of o and U, using Egs. (1), (2), (5), and
(6), as
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(doc oU 62U> .
09 =—plr—+—+r sin 0,

dz = or or?
oU
O = u(oc + §> cos 6, (7)
= o+ @—FG—U—&- 62_U sin 0
0p: = r iz e )

and

0y a,,+2,u(r%—a—(])00597
or

dz
(8)
Gog = Opr — 2 d(x +2 v cos 0
00 — Opr u dZ or .
The equilibrium equations (4) then yield the system
00, 2da+3 oU 62U+62 c0s0
or dz r or 0or? 0z 9)

00, _ do ,d« _oUu QU ,0U U 2 QU \ .
20 (2]” @726 4 az+ W+ @ﬁL aaz)sm@

which is to be solved subject to the appropriate boundary conditions.
Elimination of o, between Eq. (9) shows that « and U are related through the differential equation

o U 63U 30U 30U d'U 3 U

3@ —Jrr or? +r_2ﬁiﬁ or +61”2622+r6r622 0 (10)
It can be shown that Eq. (10) has an exact solution, which is finite for all values of z at » = 0, given by
—3/ocdz——r—+Z (11)

with Z(z) an arbitrary function of z, which can be used to express the system (9) solely in terms of o and Z.
Hence, by direct integration and imposition of the boundary condition that

g,=0 atr=a forall § and z, (12)
the Egs. (9) are satisfied by
wr 5 d*a

O =—"g (a? —r)@cos() (13)

with

&’z P d« 7d
e Lo (14)
d2 8 d? 24z
Integrating Eq. (14) twice with respect to z gives an expression for Z which after substitution into Eq. (11)
yields

(@®>—=3r*) da 1

U="% "4 2

/ocdz+kz+k1, (15)

where k and k; are arbitrary constants.
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An expression for the normal stress component a.. can now be given by using Egs. (13) and (15) with the
relationship (8); in the form

7 da r, o, d*a
O'ZZ—,LL|:57"E—§(Q —7‘2)@] cos 0. (16)

The as yet unknown angle of rotation o(z) which appears in the expressions (13), (15), and (16) must now be
determined. The normal stress component acting at all points on a z = constant plane combine to be
equivalent to the imposed couple of magnitude M — FZz in the negative direction of the y-axis, so that

2n a
M—F= / / ra.. cos 0drde. (17)
o Jo

Evaluating this using Eq. (16) leads to the differential equation governing o as
da & d’a 8
2 _=_° (M-FE). 1
& 84de T 2 (18)

Its general solution can be written as

. 8 F
a(z) = ¢ coshwz+czs1nhwz+T;a4<M—EZ> + cs, (19)
with ¢, ¢, and ¢; being arbitrary constants, and
84
w’ = = (20)

The expressions (15), (19), and (20) which provide solutions to the differential equation (10) can be com-
bined to give

10 63 r? . (a® —3r?) 272 Fz
U(r,z) = (1 =30 g>(c1 sinh wz + ¢, cosh wz) +W(M_FZ) " T (M—?)
7%Z+kz+k1. (21)

The constants ¢y, ¢, ¢3 and k; can be determined to fulfil the boundary conditions imposed at the bonded
ends of the block. Since the end at z = 0 is regarded as fixed,

a(0) =0 (22)
U(r,0) =0, forallr, (23)

while at z = & there is no movement in the Oy direction, the required distance moved laterally by the end
due to bending alone in the —Ox direction is d, and its sought rotation is ¢, so that

u,sin 0 + ugcos =0 B
u,cos@—u()siHH——db}atz_hforanr’ (24)
a(h) = ¢. (25)

Subjecting the solutions (19) and (21) to the boundary conditions (22) and (23) and utilizing the relations
(24) and (25) gives

] = —¢C

w wh
=——— | Mtanh— h 2
3 147,u7m2< tan 5 + Fhcosec wh), (26)
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20M
€2 = 20k = g @7
and leads to the representations

8h Fh 2 wh

= = — % tanh—
¢ T <M 3 > <1 py? tan 3 ), (28)

1 h\’? Fh wh

= YT Fh+ 42(a) (M — 3) — wh <Mtanh2+ icosechwh)] — kh. (29)

These give the angular rotation and lateral deflection of the end of the block at z = 4 due to bending.

With the end of the block at z = 0 considered fixed, the components of the displacement perpendicular to
the z-axis due to shear alone of points on a z = constant plane within the block are assumed to be given by
Egs. (5); and (5), with

Fz

U=— 30
e (30)
and the deflection, d, of the end at z = 4 in the —Ox direction is thus
Fh
= ) 31
e (31)

This must be added to d, to obtain the total lateral deflection of the bonded end at z = 4.

The value of the remaining unknown constant, 4, in Eq. (29) depends upon the values chosen for F and
M. Situations in which F =0, M = Fh and M = Fh/2, which correspond to simple bending, cantilever
loading and apparent shear, respectively, are considered in Sections 4-6.

4. Simple bending

If flexure of the block is created by the application of a pure couple M without an applied shearing force
the block is often said to suffer “simple bending”.

4.1. Angular rotation and lateral deflection

When F =0, it follows from the expression (19) for o that the shape of the deformed block is sym-
metrical in the plane of bending about the displaced plane originally given by z = //2, in the sense that

(3oa) -o2e2)(3-2) (1)

for 0 <zj,z; <h/2. At the point of intersection, where 0 = 0, of the plane of symmetry with the profile, the
angle between this plane and the plane tangential to the surface is a right angle, and thus

(9)-4-(-3),

From Egs. (28) and (21), the requirement (32) yields

2hM 2 wh
k=———1—— tanh— 33
7una4( wh > (33)
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and hence, when F = 0, explicit representations for the lateral deflection, d, of the end z = & (which equals
d, since there is no deflection due to shear) and ¢ can be written as

4n’M 2 wh
d=2" (12 2 tapp 2 34
7,u7m4( wh T >’ (34)

8hM 2 wh
=——(1——tanh— ). 35
¢ 7una4< wh > (35)

It is interesting to note from Eqs. (34) and (35) that in this case d = h¢/2 for all values of 4 and a, which
is the same relationship as holds in the classical theory of bending.
However, the classical expression giving the angle of rotation, ¢, for a long beam is
hM
d) - H )
where E = 3y is the Young’s modulus of the rubber and /7 = na*/4 is the second moment of area of the
circular cross-section about the y-axis. Here when # is large the result (35) is approximated by

(36)

8hM
~— 37
¢ Tuma*’ (37)
which can be written analogously to Eq. (36) in terms of an effective second moment of area, /., as
hM
~— 38
b~ (38)
with
Tna*
I. = . 39
24 (39)

The physical interpretations of the results for a beam are often quoted with respect to the effects upon its
flexural rigidity or bending stiffness, B, which is defined in terms of its Young’s modulus, E, and its second
moment of area, /, as

B =EI 7 (40)
This is analogous in many ways to the definitions of the radial and tilting stiffnesses of a cylindrical rubber
bush mounting as analyzed by Horton et al. (2000a,b). It is thus clear that here the bonding of the ends of
the rubber block to rigid plates stiffens it by a factor of 7/6 (= I./I) when # is large.
On the other hand now suppose that /4 is small in comparison with a. In an approximate theoretical
treatment of bonded rubber blocks, Gent and Meinecke (1970, Eq. (8) and Table 2) suggested that the
couple M required to maintain a rotation ¢ of one bonded end is given (in the present notation) by

Ena*¢ a?
M= (1 * @) (41)
and subsequently Tsai and Lee (1999, Eq. (53)) gave
Ena*¢ (T d°
M= (EJFW)' (42)

By expanding the hyperbolic tangent using the series representation given by Abramowitz and Stegun
(1965, Eq. (4.5.64)), it can be shown that when h*/a* < 5/42 the expression (35) can be closely approxi-
mated (with an error of magnitude less than 0.54%) to give
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M:Ena4¢> <z+ a ) (43)

4n \5 " 6n?
This is of the same form as, but more realistic than, the relationships (41) and (42), since they yield cor-
responding errors of 13.82% and 7.84%, respectively, when h?/a* = 5/42.

4.2. Stresses

The stress components that are created within the rubber under simple bending of the block can be
determined from Egs. (13), (16), (8), (15), (7), and (19) in the forms

12M 2
G, = r(l—r >sech%hcoshw(%—z) cos 0,

na* a?

SMr 1 2147 wh h
o = =3 {1 + 5 <19 g ) sech 3 cosha)<2 z)} cos 0, (44)

AMr 32 wh h
=7 {1 + <2 c12> sech7 coshw<22>] cos 0

4M;
0,0 = Rl [1 — sech%h coshw(g— z)} sin 0,

and

Tna*

aM h 1 6372 wh . h
R KE_Z) - (22 —7) sechT smha)(z—z)] cos 0, (45)

AM [ (h 1 2177 wh . h .
0 =3 {(E—z> —5(22—7>sech7 smhw(z—z)] sin 0.

The maximum values of o,,, 64, 0.., 6, and oy, occur at the bonded ends z = 0 and z = A, where

12Mr r
0 =0, =0y =0, = - <1 - p> cos 0, (46)
2Mh 2 6372 h
0, ==% 1—— (22— 2 tanhw— cos
Tna* wh a? 2 (47)
g, = 2Mh 1— 2 22 — 2177 tanh wh sin 0
== F Tra* wh a? 2
whilst 6,9 has its maximum value on the central plane z = /2, where
4Mr wh\ .
O =7 g (1 - sech7> sin 0. (48)

It is clear that the maximum value, 6™, of the components in Eqgs. (46) occurs at » = a//3 when 6 = 0 and
is given by

. &M
g . (49)
V3nd3
The component g,, in Eq. (47), apparently reaches its maximum value, ¢2**, of

2Mh 82 wh
max __ 1 Il h—
0, Tndt ( + o tan > )7 (50)
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when » = a and 6 = 0. Using Eq. (33), the maximum values in Egs. (49) and (50) can be written in terms of
the angular rotation ¢ as

Tuda
max — , 51
V3h(1 — 2 tanh <) S

_ 1o (1+% tanh <)

max . 52

” 4 (1-2 tanh2) (52)
Again, if 12/a®> < 5/42, these can be closely approximated by

o pd ran? 42 (h\?

max _ 7 (7 1 i 53
g ﬁ(h) [ 5\a) | (53)
max _ SHP aN? 41 (h\?
7 T <h) [1+30(a)1’ (54)

when //a is very small, the value (54) agrees with that suggested by Gent and Meinecke (1970, p. 52).
However, it should be noted that in fact this theoretically predicted maximum value of the shear stress
component, g, (and similarly for 4,5) at » = a does not physically exist. Its determination through Egs.
(45)1, (47), (50), (52), and (54) cannot apply actually at » = a, as both ¢,. and g,y must decay rapidly to zero
very near to this surface.

Further, Gent and Lindley (1958) postulated that bonded rubber cylinders subjected to a state of hy-
drostatic tension will ‘fail’ due to internal rupture when the magnitude of the tension reaches a critical value
of between 0.783E and 0.833E (= 5u/2). More recently Gent and Meinecke (1970) quoted 9u/4, whilst
Mubhr (1992) suggested 5u/2.

If the Gent and Meinecke criterion is adopted, it is found from Eq. (53) that the critical value, ¢~, of the
angular rotation ¢ at which the rubber will fail is

VAN A 1
¢ = 4 (E) 2 (2]’ G9)
[1 +%(2) }
This value agrees with that of Gent and Meinecke (1970, Table 3) only for very short blocks.

More generally, if 6* denotes the chosen critical value of the hydrostatic stress, it follows from Eq. (51)
that correspondingly

. V3o (h a V21h
¢ _T(;> <1_\/ﬁh tanhT>. (56)

4.3. Deformed profile

The deformed shape of the block in simple bending can be deduced approximately from the expression
(21) for U.
For small deflections, the radius of curvature, R(r,z), in the plane of bending of a line within the rubber
which was originally parallel to the z-axis is given by
1 U

R 02 7
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Thus, from Eq. (21) with F =0,

1 aM 63 »? wh h

Classical bending theory predicts that the curvature of the deformed axis of the block does not depend
upon z. However it is clear, by putting » = 0 into Eq. (58), that in fact the deformed axis is concave towards
the negative x sectors for all values of z and A, but that its radius of curvature, Ry = R(0,z), varies with z
according to

1 aM wh h
R_o__W{HzOSGChT cosha)(z—z)]. (59)

Correspondingly, the radius of curvature, R, = R(a,z), of the curved lateral sides of the block after de-
formation is given by

1 am wh h
R—Q_W {43sech7 coshw(z—z) — 1]. (60)

The deformed outer profile in the plane of bending is therefore convex towards the negative x sectors
whenever 43 cosh w[(h/2) — z] > cosh(wh/2). This inequality holds at the bonded ends z = 0 and z = % for
all values of %, but it is only satisfied when z = /2 if h < 0.972a. However, blocks for which # is greater
than this critical height have kinks in the surface » = a near the central plane, z = //2, whose extents spread
more and more towards the bonded ends as 4 is increased. For example, the outer profile of a block with
h = 2a is concave towards the sectors in which x is negative, except in the regions 0.205 < z/h < 0.795 near
the bonded ends where the profile will be convex.

Some idea of the deformed outer profile in the plane of bending, as predicted by the current analysis, can
be drawn from the locus of the points having Cartesian coordinates ([r + u,]cos0/a,0, [z + u.]/a) with
0<z<h,r=aand 6 =0 and n. Here u, and u, (which are assumed in this classical linear elasticity analysis
to be infinitesimally small) are given by Egs. (5), (19)—(21), (26), (27) and (33).

The pronounced difference in shape of the exaggeratedly-deformed profile and that of the central axis,
r = 0, for blocks having #/a = 0.5 and 2 is apparent in Fig. 2(a) and (b), respectively, where M /una® has
been chosen so that the angle of rotation, ¢, of the end z =4 is 10°. M and ¢ are related through the
relation (35). Such profiles can be drawn in just a fraction of a second using a mathematical computer

2
z/a
Kv x/a x/a

-1 0 1 -1 0 1

Fig. 2. Deformed profiles in simple bending with ¢ = 10° when (a) #/a = 0.5, (b) h/a = 2.
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software package such as DERIVE on a PC. It is clear that the previously used assumption of parabolic
profiles is indeed invalid (except perhaps for blocks of very small aspect ratio #/a < 0.972).

It is interesting to observe that, if a critical value of ¢* = 5E/6 (= 5u/2) is chosen for the block depicted
in Fig. 2(a), Eq. (56) yields ¢* =~ 10.14°. Consequently angular strains greater than those creating the de-
formation in Fig. 2(a) would be likely to lead to internal failure of the rubber block originating at » = a/v/3
on the two bonded ends where they are subject to tensile stress (in the positive x sectors).

5. Cantilever loading

The deformation of the block under “cantilever loading” can be studied by putting M = Fh throughout
the analysis in Section 3.

It then follows from Eqgs. (28) and (29) that the angular rotation, ¢, and the lateral deflection, d}, due to
bending alone, of the bonded end z = /4 are given by

4FN? 2 wh
= —7/_,[7'[a4 (1 _a)_h tanh7>, (61)
b= as(MY  hcothon| - (62)
" T 147 una? a @ @ '

When # is large, these expressions yield
th Fh3

N—— dy~——kh
¢ 2E1,° "7 6El,

, (63)
where [, is given by Eq. (39). The classical theory of bending predicts that for cantilevers ¢ = Fh?/2EI and
d, = FIi® /3EI, so that d, = 2h¢ /3. The value of the constant k in the limit of large 4 can be found from Egs.
(63) to comply with this. However if this relationship is enforced for all values of / between the expressions
(61) and (62) for ¢ and d,, as with the corresponding relation in the simple bending situation in Section 4.1,
the appropriate value of k£ can be found so that

8FN3 2 wh
=———(1—--—"—tanh— ). 4
% 21,u7ra4< wh tan 2 ) (64)

Finally, when the deflection d; due to the shear, given by Eq. (31), is superposed onto this, the total
deflection, d, under cantilever loading can be expressed as

+%<§)2<1—£tanh%h)]. (65)

An approximation to the shape of the deformed profile can be deduced from the representations (19) and
(21) for « and U with the appropriate value for £, if desired.

i
una

6. Apparent shear

When one end is displaced parallel to the other in its own plane the block experiences an ‘“apparent
shear” displacement. This occurs when M = Fi/2 in the general analysis of Section 3. But alternatively the
deflection in apparent shear can be equivalently derived very conveniently by regarding it as the super-
position of that in the cantilever loading of Section 5 when M = Fh with that in the simple bending of
Section 4 when M = —Fh/2.
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6.1. Angular rotation and lateral deflection

It is clear that when M = Fh/2 in Egs. (28) and (29)

d=0 (66)
as expected, and
Fh AN wh
=——|1 -] ——coth— | —kh.
dy 147 und l + 7<a) > cot > ] kh (67)
On the other hand, by superposition of Egs. (64) and (34) with M = —Fh/2
2F0 2 wh

The equivalence of Egs. (67) and (68) enables the constant &, which is needed in Eq. (21) for describing the
deformed profile, to be determined.

The deflection d from Eq. (31) due to the simple shear alone must be added to the expression (68) to give
a representation for the total deflection, d, of the bonded end z = 4 in apparent shear as

Fh 2 /h\? 2 wh
o= B () (- 2] ®

From this the ratio, u/u,, of the true shear modulus, yu, to the apparent shear modulus, p,, under these
loading conditions can be written in the form

0o 2 (h\’ 2 wh
ﬂa_1+21 (a) (1 o tanh > ) (70)
When # is large, Eq. (69) yields
Fh3
d =~ DEL’ (71)

with I, given by Eq. (39), which is analogous with the form in the classical theory of beams.
On the other hand, if /a is small, a series expansion shows that when h?/a*> < 5/42 the expression (70) is
closely approximated (with an error of magnitude less than 0.003%) by

1 approx h2
Ha 36214 +1(4)°]

where k.(= a/2) is the radius of gyration of the circular cross-section.
Rivlin and Saunders (1949) presented both theoretical and experimental results for the ratio u/p,. Their
suggested approximation, (u/u,)*® for comparison with the experiments was simply

RS 2
u _ h
(u) _1+36k§. (73)

However, Gent and Meinecke (1970) observed that this is only adequate when the bending deflection is
appreciable, i.e. when 7 is large, and instead proposed the approximate ratio, (p/ ,ua)GM given by

M
<Ha> 1+36k§{1+%(%)2}' (74)
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The relation (72) for the ratio provides a better estimate to the exact representation (70) than those of Eqs.
(73) and (74). Comparisons of the values obtained for the ratio using the expressions (70), (73) and (74) with
the experimental results, (1/p, )", given by Rivlin and Saunders (1949) are displayed in Table 1 and Fig. 3.

6.2. Stresses

The normal stress components in the block under apparent shear can be deduced from Egs. (13), (16),

(8),, (15) and (19), and it is found that the maximum values of these occur at the bonded ends z = 0 and &
where

6F (h\ [r r
O_:O_rr:O'(;g:UZZ:j:naz(a><a) <1—az>COSO. (75)

Their maximum magnitude, ¢™*, clearly occurs at # = 0 when r = a/ V/3 and is given by

Table 1

Ratio of the true shear modulus to the apparent shear modulus
hja 0 0.25 0.75 1.5 2 3 4
(1) 11,)°® - 0.9898 1.117 1.161 1.35 1.787 2.62
/1, 1.0 1.002 1.038 1.183 1.339 1.795 2.44
(/1) 1.0 1.002 1.048 1.233 1.427 1.982 2.76
(1) u)™S 1.0 1.007 1.063 1.25 1.444 2.0 2.78

4ty

2.5

0.5

h/a

0 1 2 3 4

Fig. 3. Variation with &/a of (a) 1/, (b) (1/pt,)™, (©) (u/)%S, (M) () p,)°™.
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ey ] (76)

If the critical value at which rupture occurs is chosen to be ¢* = 5u/2, it is found, using the relationship (69)
connecting F and d, that the critical value, (d/a)", of the scaled lateral deflection of the bonded end z = 4 is

(4) =33 e () (1 )| %

6.3. Deformed profile

A general idea of the deformed shape of the block in apparent shear can be obtained from Eq. (61), as
in Section 4.3, with U given by Eqgs. (21) and (30) when M = Fi/2 and k obtained from Egs. (67) and (68).
It is found that the radius of curvature R is given by

1 2Fh 63 r? wh h 2z
_—= — _—_— sl —_ — 1—— .
R Tt [20(1 20 az)cosech 3 s1nhcu(2 z) + < 7 )] (78)

This is asymmetrical about the plane z = 4/2, and is actually zero when z = %/2. Tt is clear, by putting » = 0,
that for all values of 4 the deformed axis of the block is concave towards the negative x sectors for
0<z < h/2 but is convex for h/2 < z<h. However, the radius of curvature, R,, of the deformed curved
lateral sides can be found from

1 2Fh wh h 2z
— = s o) (1=,
R~ T [43c0sech > s1nhw( 5 z) < , )] (79)

The deformed outer profile is therefore convex towards the negative x sectors whenever
43sinh w[(h/2) —z] > (1 — 2z/h) sinh(wh/2). This inequality holds for all values of % at the bonded end
z = 0. Conversely, at the end z = & the deformed outer profile is concave towards the negative x sectors for
all values of 4. Furthermore, the lateral surface slightly above the central plane z = //2 will be concave
towards the negative x sectors if # < 1.373a and convex otherwise, whilst slightly below z = 4/2 it will be
convex if 2 < 1.373a and concave otherwise.

\ \ C\
\ \
N R .

! 2 -1 0 1

Fig. 4. Deformed profiles in apparent shear when (a) d = 2a, h/a =3 (b) d = 2a/3, hja = 1.
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Some idea of the exact deformed outer profile and central axis, as predicted by the current analysis, can
be drawn as outlined in Section 4.3. Rivlin and Saunders (1949, Fig. 1(c)) presented a photograph of their
experimental work with a deformed cylinder in a shear mounting, in which it appears that approximately
the lateral deflection is twice the radius for a cylinder whose length is three times the radius. For direct
comparison the curves in Fig. 4(a) have therefore been calculated with F/una chosen so that d = 2a and
with #/a = 3. F and d are connected according to the relation (69). The profile can be seen to agree very
closely with that of Rivlin and Saunders (1949, Fig. 1(c)). It is noteworthy that with these dimensions Rivlin
and Saunders were actually very close to attaining internal rupture, as when //a = 3 the relation (77) gives
(d/a)" = 1.94. For comparison, the shape in Fig. 4(b) depicts a block with d = 2a/3 and h/a = 1, for which
(d/a)" = 1.16.
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