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Abstract

Convenient exact closed-form expressions are derived for calculating the bending stiffness of and stresses within

loaded cylindrical bonded rubber blocks of circular cross-section. The particular solutions for simple bending, canti-

lever loading and apparent shear situations are deduced and studied in detail. The shapes of the deformed profiles are

discussed and confirmation is provided that the previously adopted assumption of parabolic profiles of the deformed

lateral curved surface is only valid for blocks of very small aspect ratio. In simple bending a relationship which is more

realistic than those hitherto suggested is derived for the couple required to maintain a specified rotation of the loaded

end of the block. In apparent shear an exact expression for the ratio of the true to the apparent shear modulus is

derived, and compared with the experimental data. An improved approximate relation is deduced.

� 2002 Elsevier Science Ltd. All rights reserved.
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1. Introduction

The properties of rubber mountings bonded to rigid metallic end plates have been exploited widely for

many years in a variety of engineering components. It is therefore extremely important to be able to predict

their deformation and stiffness under specified applied loads.

An analysis is presented here of a rubber block of right-circular cross-section with one end maintained in

a fixed position while the other end is subjected to a couple and shear force. In general this causes the block
to bend, with its loaded surface tilting and deflecting laterally.

The fundamental problem is formulated in Section 2, and then, in Section 3, an exact analytical solution

to the governing equations under a comprehensive loading system is derived. This enables detailed dis-

cussions to be undertaken in Sections 4–6, respectively, of situations corresponding to simple bending,

cantilever loading and apparent shear.

Rivlin and Saunders (1949) investigated experimentally the effects of bending and shear on various

cylindrical shear mountings. They attempted to determine the modulus of rigidity of the rubber, and
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suggested a theoretical approximate formula for the ratio, l=la, of the true shear modulus to the apparent

shear modulus with which they compared their results. Their treatment was critically reconsidered by Gent

and Meinecke (1970), who proposed alternative expressions for the bending stiffness factors in apparent

shear for various cross-sections. More recently, Tsai and Lee (1999) developed a pressure approach to
determine the tilting stiffness of an elastic layer bonded between rigid plates.

These previous analyses rely on the kinematic assumptions that not only do the cross-sectional planes

remain planar but that the lines initially normal to the bonding plates become parabolic under deformation.

It is specifically confirmed in the present paper in Sections 4.3 and 6.3 that the assumption of a parabolic

profile is in general invalid. From the exact general solution given here, with this assumption relaxed, an

expression is derived for the shear moduli ratio in apparent shear which enables an improved approxi-

mation, l=lapprox
a , to be deduced. Comparisons are given with the experimental data of Rivlin and Saunders

(1949). Similarly, in simple bending a more realistic relationship between the couple required to maintain a
specified rotation of the loaded end of the block is deduced.

2. Theoretical formulation

Consider a rubber block of right-circular cross-section, with radius a and axial height h. A rectangular

Cartesian coordinate system ðx; y; zÞ is defined relative to an origin O at the centre of one of its end faces

with Oz along the axis of the block, as shown in Fig. 1. The cylindrical polar coordinates ðr; h; zÞ of a point

P within the block are related to its Cartesian coordinates by the equations

x ¼ r cos h; y ¼ r sin h; z ¼ z:

The rubber is bonded to two rigid end plates at z ¼ 0 and h that prevent all distortions of its plane end
surfaces with the end at z ¼ 0 held in a fixed position. The other end at z ¼ h is subjected to a shear force of

magnitude F to the face in the �Ox direction together with a moment of magnitude M � Fh in the negative

direction of the y-axis. This will tilt the face z ¼ h through a small angle of rotation / about the y-axis and
laterally displace it a small distance d in the �Ox direction.

Fig. 1. Undeformed cross-section of the block through the y ¼ 0 plane.
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It is assumed throughout that the rubber is isotropic, homogeneous and incompressible, and that the

displacement gradients are sufficiently small for the classical linear theory of elasticity to be applicable. The

radial, tangential and axial components of the displacement of the point P are denoted by ur, uh and uz,
respectively, and the cylindrical strain and stress components by eij and rij, where i, j ¼ r, h or z, in the
usual notation.

The strain–displacement gradients relations and the constitutive equations can be written as

err ¼
our
or

; ehh ¼
ur
r
þ 1

r
ouh

oh
ezz ¼

ouz
oz

; erh ¼ ehr ¼
1

2

ouh

or

�
� uh

r
þ 1

r
our
oh

�
;

erz ¼ ezr ¼
1

2

ouz
or

�
þ our

oz

�
; ehz ¼ ezh ¼

1

2

ouh

oz

�
þ 1

r
ouz
oh

�
; ð1Þ

err ¼
1

3l
rrr

�
� 1

2
ðrhh þ rzzÞ

�
; ehh ¼

1

3l
rhh

�
� 1

2
ðrrr þ rzzÞ

�
;

ezz ¼
1

3l
rzz

�
� 1

2
ðrrr þ rhhÞ

�
; rrh ¼ rhr ¼ 2lerh; rrz ¼ rzr ¼ 2lerz; rhz ¼ rzh ¼ 2lehz; ð2Þ

where l is the shear modulus. The assumption of incompressibility implies that, for small strains,

err þ ehh þ ezz ¼ 0 ð3Þ

and the equilibrium equations which must be fulfilled in the radial and tangential directions (Spencer, 1980,

Eq. (11.39)) are

orrr

or
þ 1

r
orrh

oh
þ orrz

oz
þ rrr � rhh

r
¼ 0;

orrh

or
þ 1

r
orhh

oh
þ orhz

oz
þ 2rrh

r
¼ 0:

ð4Þ

3. Solution for a general loading

Expressions for the angular rotation and lateral deflection of the bonded end of the block at z ¼ h arising
from the bending are first derived for a general loading situation.

During bending it is assumed that plane right-circular cross-sections remain plane whilst rotating

through an angle aðzÞ from the z ¼ constant planes. Representations for the corresponding displacement

components at the general point P in the rubber are therefore sought in the forms

ur ¼ U cos h; uh ¼ V sin h; uz ¼ ar cos h; ð5Þ

with the functions U and V depending upon r and z.
By substituting these into the incompressibility condition (3), using Eq. (1), it follows that

V ¼ � U
�

þ r
oU
or

þ r2
da
dz

�
: ð6Þ

The shear and normal stress components can be expressed in terms of a and U , using Eqs. (1), (2), (5), and
(6), as
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rrh ¼ �l r
da
dz

�
þ oU

or
þ r

o2U
or2

�
sin h;

rrz ¼ l a

�
þ oU

oz

�
cos h;

rhz ¼ �l a

�
þ r2

d2a
dz2

þ oU
oz

þ r
o2U
oroz

�
sin h;

ð7Þ

and

rzz ¼ rrr þ 2l r
da
dz

�
� oU

or

�
cos h;

rhh ¼ rrr � 2l r
da
dz

�
þ 2

oU
or

�
cos h:

ð8Þ

The equilibrium equations (4) then yield the system

orrr

or
¼ �l 2

da
dz

�
þ 3

r
oU
or

� o2U
or2

þ o2U
oz2

�
cos h;

orrr

oh
¼ l 2r

da
dz

�
þ r3

d3a
dz3

� 2
oU
or

þ 4r
o2U
or2

þ r2
o3U
or3

þ r
o2U
oz2

þ r2
o3U
oroz2

�
sin h;

ð9Þ

which is to be solved subject to the appropriate boundary conditions.

Elimination of rrr between Eq. (9) shows that a and U are related through the differential equation

3
d3a
dz3

þ o4U
or4

þ 6

r
o3U
or3

þ 3

r2
o2U
or2

� 3

r3
oU
or

þ o4U
or2oz2

þ 3

r
o3U
oroz2

¼ 0: ð10Þ

It can be shown that Eq. (10) has an exact solution, which is finite for all values of z at r ¼ 0, given by

U ¼ 3

Z
adz� 3

8
r2
da
dz

þ Z; ð11Þ

with ZðzÞ an arbitrary function of z, which can be used to express the system (9) solely in terms of a and Z.
Hence, by direct integration and imposition of the boundary condition that

rrr ¼ 0 at r ¼ a for all h and z; ð12Þ

the Eqs. (9) are satisfied by

rrr ¼ � lr
8
ða2 � r2Þ d

3a
dz3

cos h ð13Þ

with

d2Z
dz2

¼ a2

8

d3a
dz3

� 7

2

da
dz

: ð14Þ

Integrating Eq. (14) twice with respect to z gives an expression for Z which after substitution into Eq. (11)

yields

U ¼ ða2 � 3r2Þ
8

da
dz

� 1

2

Z
adzþ kzþ k1; ð15Þ

where k and k1 are arbitrary constants.
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An expression for the normal stress component rzz can now be given by using Eqs. (13) and (15) with the

relationship (8)1 in the form

rzz ¼ l
7

2
r
da
dz

�
� r
8
ða2 � r2Þ d

3a
dz3

�
cos h: ð16Þ

The as yet unknown angle of rotation aðzÞ which appears in the expressions (13), (15), and (16) must now be

determined. The normal stress component acting at all points on a z ¼ constant plane combine to be

equivalent to the imposed couple of magnitude M � Fz in the negative direction of the y-axis, so that

M � Fz ¼
Z 2p

0

Z a

0

r2rzz cos hdrdh: ð17Þ

Evaluating this using Eq. (16) leads to the differential equation governing a as

da
dz

� a2

84

d3a
dz3

¼ 8

7lpa4
ðM � FzÞ: ð18Þ

Its general solution can be written as

aðzÞ ¼ c1 coshxzþ c2 sinhxzþ 8z
7lpa4

M
�

� Fz
2

�
þ c3; ð19Þ

with c1, c2 and c3 being arbitrary constants, and

x2 ¼ 84

a2
: ð20Þ

The expressions (15), (19), and (20) which provide solutions to the differential equation (10) can be com-

bined to give

Uðr; zÞ ¼ 10

x
1

�
� 63

20

r2

a2

�
ðc1 sinhxzþ c2 coshxzÞ þ ða2 � 3r2Þ

7lpa4
ðM � FzÞ � 2z2

7lpa4
M
�

� Fz
3

�

� c3
2
zþ kzþ k1: ð21Þ

The constants c1, c2, c3 and k1 can be determined to fulfil the boundary conditions imposed at the bonded

ends of the block. Since the end at z ¼ 0 is regarded as fixed,

að0Þ ¼ 0 ð22Þ

Uðr; 0Þ ¼ 0; for all r; ð23Þ
while at z ¼ h there is no movement in the Oy direction, the required distance moved laterally by the end

due to bending alone in the �Ox direction is db and its sought rotation is /, so that

ur sin h þ uh cos h ¼ 0

ur cos h � uh sin h ¼ �db

�
at z ¼ h for all r; ð24Þ

aðhÞ ¼ /: ð25Þ
Subjecting the solutions (19) and (21) to the boundary conditions (22) and (23) and utilizing the relations

(24) and (25) gives

c1 ¼ �c3 ¼
2x

147lpa2
M tanh

xh
2

�
þ Fhcosechxh

�
; ð26Þ
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c2 ¼ 2xk1 ¼ � 2xM
147lpa2

ð27Þ

and leads to the representations

/ ¼ 8h
7lpa4

M
�

� Fh
2

�
1

�
� 2

xh
tanh

xh
2

�
; ð28Þ

db ¼
1

147lpa2
Fh

"
þ 42

h
a

� �2

M
�

� Fh
3

�
� xh M tanh

xh
2

�
þ Fhcosechxh

�#
� kh: ð29Þ

These give the angular rotation and lateral deflection of the end of the block at z ¼ h due to bending.

With the end of the block at z ¼ 0 considered fixed, the components of the displacement perpendicular to

the z-axis due to shear alone of points on a z ¼ constant plane within the block are assumed to be given by
Eqs. (5)1 and (5)2 with

U ¼ � Fz
lpa2

ð30Þ

and the deflection, ds, of the end at z ¼ h in the �Ox direction is thus

ds ¼
Fh

lpa2
: ð31Þ

This must be added to db to obtain the total lateral deflection of the bonded end at z ¼ h.
The value of the remaining unknown constant, k, in Eq. (29) depends upon the values chosen for F and

M . Situations in which F ¼ 0, M ¼ Fh and M ¼ Fh=2, which correspond to simple bending, cantilever

loading and apparent shear, respectively, are considered in Sections 4–6.

4. Simple bending

If flexure of the block is created by the application of a pure couple M without an applied shearing force

the block is often said to suffer ‘‘simple bending’’.

4.1. Angular rotation and lateral deflection

When F ¼ 0, it follows from the expression (19) for a that the shape of the deformed block is sym-

metrical in the plane of bending about the displaced plane originally given by z ¼ h=2, in the sense that

a
h
2

�
þ z1

�
� a

h
2

�
þ z2

�
¼ a

h
2

�
� z2

�
� a

h
2

�
� z1

�

for 06 z1; z2 6 h=2. At the point of intersection, where h ¼ 0, of the plane of symmetry with the profile, the

angle between this plane and the plane tangential to the surface is a right angle, and thus

a
h
2

� �
¼ /

2
¼
�
� oU

oz

�
z¼h

2

: ð32Þ

From Eqs. (28) and (21), the requirement (32) yields

k ¼ � 2hM
7lpa4

1

�
� 2

xh
tanh

xh
2

�
ð33Þ
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and hence, when F ¼ 0, explicit representations for the lateral deflection, d, of the end z ¼ h (which equals

db since there is no deflection due to shear) and / can be written as

d ¼ 4h2M
7lpa4

1

�
� 2

xh
tanh

xh
2

�
; ð34Þ

/ ¼ 8hM
7lpa4

1

�
� 2

xh
tanh

xh
2

�
: ð35Þ

It is interesting to note from Eqs. (34) and (35) that in this case d ¼ h/=2 for all values of h and a, which
is the same relationship as holds in the classical theory of bending.

However, the classical expression giving the angle of rotation, /, for a long beam is

/ ¼ hM
EI

; ð36Þ

where E ¼ 3l is the Young�s modulus of the rubber and I ¼ pa4=4 is the second moment of area of the

circular cross-section about the y-axis. Here when h is large the result (35) is approximated by

/ � 8hM
7lpa4

; ð37Þ

which can be written analogously to Eq. (36) in terms of an effective second moment of area, Ie, as

/ � hM
EIe

; ð38Þ

with

Ie ¼
7pa4

24
: ð39Þ

The physical interpretations of the results for a beam are often quoted with respect to the effects upon its

flexural rigidity or bending stiffness, B, which is defined in terms of its Young�s modulus, E, and its second

moment of area, I , as

B ¼ EI � hM
/

: ð40Þ

This is analogous in many ways to the definitions of the radial and tilting stiffnesses of a cylindrical rubber

bush mounting as analyzed by Horton et al. (2000a,b). It is thus clear that here the bonding of the ends of

the rubber block to rigid plates stiffens it by a factor of 7=6 ð¼ Ie=IÞ when h is large.

On the other hand now suppose that h is small in comparison with a. In an approximate theoretical

treatment of bonded rubber blocks, Gent and Meinecke (1970, Eq. (8) and Table 2) suggested that the

couple M required to maintain a rotation / of one bonded end is given (in the present notation) by

M ¼ Epa4/
4h

1

�
þ a2

6h2

�
ð41Þ

and subsequently Tsai and Lee (1999, Eq. (53)) gave

M ¼ Epa4/
4h

7

6

�
þ a2

6h2

�
: ð42Þ

By expanding the hyperbolic tangent using the series representation given by Abramowitz and Stegun

(1965, Eq. (4.5.64)), it can be shown that when h2=a2 < 5=42 the expression (35) can be closely approxi-
mated (with an error of magnitude less than 0.54%) to give
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M ¼ Epa4/
4h

7

5

�
þ a2

6h2

�
: ð43Þ

This is of the same form as, but more realistic than, the relationships (41) and (42), since they yield cor-

responding errors of 13.82% and 7.84%, respectively, when h2=a2 ¼ 5=42.

4.2. Stresses

The stress components that are created within the rubber under simple bending of the block can be

determined from Eqs. (13), (16), (8)2, (15), (7), and (19) in the forms

rrr ¼
12Mr
pa4

1

�
� r2

a2

�
sech

xh
2

coshx
h
2

�
� z
�
cos h;

rhh ¼
8Mr
7pa4

1

�
þ 1

2
19

�
� 21r2

a2

�
sech

xh
2

coshx
h
2

�
� z
��

cos h;

rzz ¼
4Mr
pa4

1

�
þ 2

�
� 3r2

a2

�
sech

xh
2

coshx
h
2

�
� z
��

cos h

ð44Þ

and

rrh ¼
4Mr
7pa4

1

�
� sech

xh
2

coshx
h
2

�
� z
��

sin h;

rrz ¼ � 4M
7pa4

h
2

��
� z
�
� 1

x
22

�
� 63r2

a2

�
sech

xh
2

sinhx
h
2

�
� z
��

cos h;

rhz ¼
4M
7pa4

h
2

��
� z
�
� 1

x
22

�
� 21r2

a2

�
sech

xh
2

sinhx
h
2

�
� z
��

sin h:

ð45Þ

The maximum values of rrr, rhh, rzz, rrz and rhz occur at the bonded ends z ¼ 0 and z ¼ h, where

r ¼ rrr ¼ rhh ¼ rzz ¼
12Mr
pa4

1

�
� r2

a2

�
cos h; ð46Þ

rrz ¼ � 2Mh
7pa4

1

�
� 2

xh
22

�
� 63r2

a2

�
tanh

xh
2

�
cos h

rhz ¼ 	 2Mh
7pa4

1

�
� 2

xh
22

�
� 21r2

a2

�
tanh

xh
2

�
sin h

ð47Þ

whilst rrh has its maximum value on the central plane z ¼ h=2, where

rrh ¼
4Mr
7pa4

1

�
� sech

xh
2

�
sin h: ð48Þ

It is clear that the maximum value, rmax, of the components in Eqs. (46) occurs at r ¼ a=
ffiffiffi
3

p
when h ¼ 0 and

is given by

rmax ¼ 8Mffiffiffi
3

p
pa3

: ð49Þ

The component rrz in Eq. (47)1 apparently reaches its maximum value, rmax
rz , of

rmax
rz ¼ 2Mh

7pa4
1

�
þ 82

xh
tanh

xh
2

�
; ð50Þ
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when r ¼ a and h ¼ 0. Using Eq. (33), the maximum values in Eqs. (49) and (50) can be written in terms of

the angular rotation / as

rmax ¼ 7l/affiffiffi
3

p
h 1� 2

xh tanh
xh
2


 � ; ð51Þ

rmax
rz ¼ l/

4

1þ 82
xh tanh

xh
2


 �
1� 2

xh tanh
xh
2


 � : ð52Þ

Again, if h2=a2 < 5=42, these can be closely approximated by

rmax ¼ l/ffiffiffi
3

p a
h

� 
3
1

"
þ 42

5

h
a

� �2
#
; ð53Þ

rmax
rz ¼ 3l/

2

a
h

� 
2
1

"
þ 41

30

h
a

� �2
#
; ð54Þ

when h=a is very small, the value (54) agrees with that suggested by Gent and Meinecke (1970, p. 52).

However, it should be noted that in fact this theoretically predicted maximum value of the shear stress
component, rrz (and similarly for rrh) at r ¼ a does not physically exist. Its determination through Eqs.

(45)1, (47), (50), (52), and (54) cannot apply actually at r ¼ a, as both rrz and rrh must decay rapidly to zero

very near to this surface.

Further, Gent and Lindley (1958) postulated that bonded rubber cylinders subjected to a state of hy-

drostatic tension will �fail� due to internal rupture when the magnitude of the tension reaches a critical value

of between 0.783E and 0.833E ð¼ 5l=2Þ. More recently Gent and Meinecke (1970) quoted 9l=4, whilst
Muhr (1992) suggested 5l=2.

If the Gent and Meinecke criterion is adopted, it is found from Eq. (53) that the critical value, /�, of the
angular rotation / at which the rubber will fail is

/� ¼ 9
ffiffiffi
3

p

4

h
a

� �3
1

1þ 42
5

h
a


 �2h i : ð55Þ

This value agrees with that of Gent and Meinecke (1970, Table 3) only for very short blocks.

More generally, if r� denotes the chosen critical value of the hydrostatic stress, it follows from Eq. (51)

that correspondingly

/� ¼
ffiffiffi
3

p
r�

7l
h
a

� �
1

 
� affiffiffiffiffi

21
p

h
tanh

ffiffiffiffiffi
21

p
h

a

!
: ð56Þ

4.3. Deformed profile

The deformed shape of the block in simple bending can be deduced approximately from the expression

(21) for U .

For small deflections, the radius of curvature, Rðr; zÞ, in the plane of bending of a line within the rubber

which was originally parallel to the z-axis is given by

1

R
¼ o2U

oz2
: ð57Þ
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Thus, from Eq. (21) with F ¼ 0,

1

R
¼ � 4M

7lpa4
1

�
þ 20 1

�
� 63

20

r2

a2

�
sech

xh
2

coshx
h
2

�
� z
��

: ð58Þ

Classical bending theory predicts that the curvature of the deformed axis of the block does not depend

upon z. However it is clear, by putting r ¼ 0 into Eq. (58), that in fact the deformed axis is concave towards
the negative x sectors for all values of z and h, but that its radius of curvature, R0 ¼ Rð0; zÞ, varies with z
according to

1

R0

¼ � 4M
7lpa4

1

�
þ 20sech

xh
2

coshx
h
2

�
� z
��

: ð59Þ

Correspondingly, the radius of curvature, Ra ¼ Rða; zÞ, of the curved lateral sides of the block after de-

formation is given by

1

Ra
¼ 4M

7lpa4
43sech

xh
2

coshx
h
2

��
� z
�
� 1

�
: ð60Þ

The deformed outer profile in the plane of bending is therefore convex towards the negative x sectors
whenever 43 coshx½ðh=2Þ � z
 > coshðwh=2Þ. This inequality holds at the bonded ends z ¼ 0 and z ¼ h for

all values of h, but it is only satisfied when z ¼ h=2 if h < 0:972a. However, blocks for which h is greater

than this critical height have kinks in the surface r ¼ a near the central plane, z ¼ h=2, whose extents spread
more and more towards the bonded ends as h is increased. For example, the outer profile of a block with

h ¼ 2a is concave towards the sectors in which x is negative, except in the regions 0:205 < z=h < 0:795 near

the bonded ends where the profile will be convex.

Some idea of the deformed outer profile in the plane of bending, as predicted by the current analysis, can

be drawn from the locus of the points having Cartesian coordinates ð½r þ ur
 cos h=a; 0; ½zþ uz
=aÞ with
06 z6 h, r ¼ a and h ¼ 0 and p. Here ur and uz (which are assumed in this classical linear elasticity analysis

to be infinitesimally small) are given by Eqs. (5), (19)–(21), (26), (27) and (33).

The pronounced difference in shape of the exaggeratedly-deformed profile and that of the central axis,

r ¼ 0, for blocks having h=a ¼ 0:5 and 2 is apparent in Fig. 2(a) and (b), respectively, where M=lpa2 has
been chosen so that the angle of rotation, /, of the end z ¼ h is 10�. M and / are related through the

relation (35). Such profiles can be drawn in just a fraction of a second using a mathematical computer

Fig. 2. Deformed profiles in simple bending with / ¼ 10� when (a) h=a ¼ 0:5, (b) h=a ¼ 2.
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software package such as DERIVE on a PC. It is clear that the previously used assumption of parabolic

profiles is indeed invalid (except perhaps for blocks of very small aspect ratio h=a � 0:972).
It is interesting to observe that, if a critical value of r� ¼ 5E=6 ð¼ 5l=2Þ is chosen for the block depicted

in Fig. 2(a), Eq. (56) yields /� � 10:14�. Consequently angular strains greater than those creating the de-
formation in Fig. 2(a) would be likely to lead to internal failure of the rubber block originating at r ¼ a=

ffiffiffi
3

p

on the two bonded ends where they are subject to tensile stress (in the positive x sectors).

5. Cantilever loading

The deformation of the block under ‘‘cantilever loading’’ can be studied by putting M ¼ Fh throughout

the analysis in Section 3.

It then follows from Eqs. (28) and (29) that the angular rotation, /, and the lateral deflection, db, due to
bending alone, of the bonded end z ¼ h are given by

/ ¼ 4Fh2

7lpa4
1

�
� 2

xh
tanh

xh
2

�
; ð61Þ

db ¼
Fh

147lpa2
1

"
þ 28

h
a

� �2

� xh cothxh

#
� kh: ð62Þ

When h is large, these expressions yield

/ � Fh2

2EIe
; db �

Fh3

6EIe
� kh; ð63Þ

where Ie is given by Eq. (39). The classical theory of bending predicts that for cantilevers / ¼ Fh2=2EI and
db ¼ Fh3=3EI , so that db ¼ 2h/=3. The value of the constant k in the limit of large h can be found from Eqs.

(63) to comply with this. However if this relationship is enforced for all values of h between the expressions

(61) and (62) for / and db, as with the corresponding relation in the simple bending situation in Section 4.1,

the appropriate value of k can be found so that

db ¼
8Fh3

21lpa4
1

�
� 2

xh
tanh

xh
2

�
: ð64Þ

Finally, when the deflection ds due to the shear, given by Eq. (31), is superposed onto this, the total

deflection, d, under cantilever loading can be expressed as

d ¼ Fh
lpa2

1

"
þ 8

21

h
a

� �2

1

�
� 2

xh
tanh

xh
2

�#
: ð65Þ

An approximation to the shape of the deformed profile can be deduced from the representations (19) and
(21) for a and U with the appropriate value for k, if desired.

6. Apparent shear

When one end is displaced parallel to the other in its own plane the block experiences an ‘‘apparent

shear’’ displacement. This occurs when M ¼ Fh=2 in the general analysis of Section 3. But alternatively the

deflection in apparent shear can be equivalently derived very conveniently by regarding it as the super-

position of that in the cantilever loading of Section 5 when M ¼ Fh with that in the simple bending of
Section 4 when M ¼ �Fh=2.
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6.1. Angular rotation and lateral deflection

It is clear that when M ¼ Fh=2 in Eqs. (28) and (29)

/ ¼ 0 ð66Þ
as expected, and

db ¼
Fh

147lpa2
1

"
þ 7

h
a

� �2

� xh
2

coth
xh
2

#
� kh: ð67Þ

On the other hand, by superposition of Eqs. (64) and (34) with M ¼ �Fh=2

db ¼
2Fh3

21lpa4
1

�
� 2

xh
tanh

xh
2

�
: ð68Þ

The equivalence of Eqs. (67) and (68) enables the constant k, which is needed in Eq. (21) for describing the

deformed profile, to be determined.

The deflection ds from Eq. (31) due to the simple shear alone must be added to the expression (68) to give

a representation for the total deflection, d, of the bonded end z ¼ h in apparent shear as

d ¼ Fh
lpa2

1

"
þ 2

21

h
a

� �2

1

�
� 2

xh
tanh

xh
2

�#
: ð69Þ

From this the ratio, l=la, of the true shear modulus, l, to the apparent shear modulus, la, under these

loading conditions can be written in the form

l
la

¼ 1þ 2

21

h
a

� �2

1

�
� 2

xh
tanh

xh
2

�
: ð70Þ

When h is large, Eq. (69) yields

d � Fh3

12EIe
; ð71Þ

with Ie given by Eq. (39), which is analogous with the form in the classical theory of beams.

On the other hand, if h=a is small, a series expansion shows that when h2=a2 < 5=42 the expression (70) is

closely approximated (with an error of magnitude less than 0.003%) by

l
la

� �approx

¼ 1þ h2

36k2c 1:4þ 1
6

a
h


 �2h i ; ð72Þ

where kcð¼ a=2Þ is the radius of gyration of the circular cross-section.

Rivlin and Saunders (1949) presented both theoretical and experimental results for the ratio l=la. Their

suggested approximation, ðl=laÞ
RS

for comparison with the experiments was simply

l
la

� �RS

¼ 1þ h2

36k2c
: ð73Þ

However, Gent and Meinecke (1970) observed that this is only adequate when the bending deflection is

appreciable, i.e. when h is large, and instead proposed the approximate ratio, ðl=laÞ
GM

given by

l
la

� �GM

¼ 1þ h2

36k2c 1þ 1
6

a
h


 �2h i : ð74Þ
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The relation (72) for the ratio provides a better estimate to the exact representation (70) than those of Eqs.

(73) and (74). Comparisons of the values obtained for the ratio using the expressions (70), (73) and (74) with

the experimental results, ðl=laÞ
exp

, given by Rivlin and Saunders (1949) are displayed in Table 1 and Fig. 3.

6.2. Stresses

The normal stress components in the block under apparent shear can be deduced from Eqs. (13), (16),

(8)2, (15) and (19), and it is found that the maximum values of these occur at the bonded ends z ¼ 0 and h
where

r ¼ rrr ¼ rhh ¼ rzz ¼ � 6F
pa2

h
a

� �
r
a

� 

1

�
� r2

a2

�
cos h: ð75Þ

Their maximum magnitude, rmax, clearly occurs at h ¼ 0 when r ¼ a=
ffiffiffi
3

p
and is given by

Table 1

Ratio of the true shear modulus to the apparent shear modulus

h=a 0 0.25 0.75 1.5 2 3 4

ðl=laÞ
exp

– 0.9898 1.117 1.161 1.35 1.787 2.62

l=la 1.0 1.002 1.038 1.183 1.339 1.795 2.44

ðl=laÞ
GM

1.0 1.002 1.048 1.233 1.427 1.982 2.76

ðl=laÞ
RS

1.0 1.007 1.063 1.25 1.444 2.0 2.78

Fig. 3. Variation with h=a of (a) l=la, (b) ðl=laÞ
GM

, (c) ðl=laÞ
RS
, (j) ðl=laÞ

exp
.
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rmax ¼ 4Fffiffiffi
3

p
pa2

h
a

� �
: ð76Þ

If the critical value at which rupture occurs is chosen to be r� ¼ 5l=2, it is found, using the relationship (69)

connecting F and d, that the critical value, ðd=aÞ�, of the scaled lateral deflection of the bonded end z ¼ h is

d
a

� ��

¼ 5
ffiffiffi
3

p

8
1

"
þ 2

21

h
a

� �2

1

�
� 2

xh
tanh

xh
2

�#
: ð77Þ

6.3. Deformed profile

A general idea of the deformed shape of the block in apparent shear can be obtained from Eq. (61), as

in Section 4.3, with U given by Eqs. (21) and (30) when M ¼ Fh=2 and k obtained from Eqs. (67) and (68).

It is found that the radius of curvature R is given by

1

R
¼ � 2Fh

7lpa4
20 1

��
� 63

20

r2

a2

�
cosech

xh
2

sinhx
h
2

�
� z
�
þ 1

�
� 2z

h

��
: ð78Þ

This is asymmetrical about the plane z ¼ h=2, and is actually zero when z ¼ h=2. It is clear, by putting r ¼ 0,

that for all values of h the deformed axis of the block is concave towards the negative x sectors for

06 z < h=2 but is convex for h=2 < z6 h. However, the radius of curvature, Ra, of the deformed curved

lateral sides can be found from

1

Ra
¼ 2Fh

7lpa4
43cosech

xh
2

sinhx
h
2

��
� z
�
� 1

�
� 2z

h

��
: ð79Þ

The deformed outer profile is therefore convex towards the negative x sectors whenever

43 sinhx½ðh=2Þ � z
 > ð1� 2z=hÞ sinhðxh=2Þ. This inequality holds for all values of h at the bonded end

z ¼ 0. Conversely, at the end z ¼ h the deformed outer profile is concave towards the negative x sectors for
all values of h. Furthermore, the lateral surface slightly above the central plane z ¼ h=2 will be concave

towards the negative x sectors if h < 1:373a and convex otherwise, whilst slightly below z ¼ h=2 it will be

convex if h < 1:373a and concave otherwise.

Fig. 4. Deformed profiles in apparent shear when (a) d ¼ 2a, h=a ¼ 3 (b) d ¼ 2a=3, h=a ¼ 1.
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Some idea of the exact deformed outer profile and central axis, as predicted by the current analysis, can

be drawn as outlined in Section 4.3. Rivlin and Saunders (1949, Fig. 1(c)) presented a photograph of their

experimental work with a deformed cylinder in a shear mounting, in which it appears that approximately

the lateral deflection is twice the radius for a cylinder whose length is three times the radius. For direct
comparison the curves in Fig. 4(a) have therefore been calculated with F =lpa chosen so that d ¼ 2a and

with h=a ¼ 3. F and d are connected according to the relation (69). The profile can be seen to agree very

closely with that of Rivlin and Saunders (1949, Fig. 1(c)). It is noteworthy that with these dimensions Rivlin

and Saunders were actually very close to attaining internal rupture, as when h=a ¼ 3 the relation (77) gives

ðd=aÞ� ¼ 1:94. For comparison, the shape in Fig. 4(b) depicts a block with d ¼ 2a=3 and h=a ¼ 1, for which

ðd=aÞ� ¼ 1:16.
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